

FINAL YEAR PROJECT SPECIFICATION AND PLAN

Project Title: Vulnerability Management Personal Assistant

Created By

Khairul Amirin Bin Syahrean

Student Number: C00265680

4th Year (Hons) Cybercrime and IT Security

South East Technological University Carlow Campus

Supervised by

Richard Butler

October 27, 2023

Table of Contents

Project Specification ... 1

Technologies ... 1

Full Description .. 1

Project Deliverable List .. 2

Project Plan ... 3

Project Timeline .. 3

Project Timeline Summary.. 4

Use Case Scenario ... 5

Application Architecture Breakdown.. 7

Fine Tuning the Language Model ... 7

Scheduled vulnerability scanning ... 8

Vulnerability Listing ... 9

Vulnerability Insight and Response .. 10

Impromptu Security Scan.. 11

Basic Requirements... 12

Software Requirements .. 12

Large Language Models .. 13

High Level Programming Language ... 14

Code Editors .. 15

Web Framework Libraries... 16

Virtual Machines ... 17

Security Scanning Software .. 18

Database Options .. 19

Supporting Applications .. 20

Extension Libraries ... 20

LangChain ... 21

Hardware Requirements .. 23

References .. 24

Appendix .. 25

PROJECT PLAN AND SPECIFICATION

Page 1 of 24

Project Specification

Title: Vulnerability Management Personal Assistant

Brief Description

An AI-Powered Personal Assistant to oversee threats and vulnerabilities of an organisation

and execute scanning tasks through Python.

Technologies

1. Python (Base Programming Language)

2. GPT 3.5 (Base Large Language Model)

3. ChromaDB (local database application)

4. Streamlit (Python-based web framework)

5. PyCharm (Code Editor)

6. GitHub (Code repository)

7. Nmap (Network discovery tool)

8. Nessus Essentials (Basic Vulnerability Scanner)

Full Description

There has been a meteoric rise in the development of Artificial Intelligence. Technological

advancements have led to machines capable of learning from data and make intelligent

decisions. Nowadays major industries and organizations are clamouring for AI-based

applications to streamline operations and automate tedious tasks (Uzialko, 2023). IT users are

encouraged to learn, adapt, and implement AI into their workflow.

For my final year project, I am creating an AI-powered personal assistant that oversees

vulnerability management of a company’s IT security infrastructure. It would mainly be a user-

friendly personal chatbot allowing users to obtain insightful information on threats or

vulnerabilities of the company’s systems at a moment’s notice. Example information would be

listing known vulnerabilities from exported reports of Nessus scanners, historical data of

company machines and possibly remediation recommendations. To make it truly stand out from

competitors, I have added user personalization to the assistant. In other words, the AI model

would be able to identify needs through constant interaction and tailor the conversation and

PROJECT PLAN AND SPECIFICATION

Page 2 of 24

workflow to the user. This configuration would be carried over the next time the user logs in

to the application.

The purpose of this project is to showcase how AI can be integrated into vulnerability

management of IT systems for businesses and organizations. It will mainly assist cybersecurity

personnel with their daily routines of discovering and examining known vulnerabilities. For

later iterations of the application the bot would feature the capability to run impromptu scans

outside established scanning policies using the available tools such as Nmap for network

scanning and Zap for a more comprehensive vulnerability scan. The application can also triage

vulnerabilities to appropriate response teams and notifying other members through email.

Project Deliverable List

Mandatory

GUI - Simple GUI with user input box and AI output box.

Chatbot capability – Can interact with user using Large Language Model.

Database – Database to store scan reports

Vulnerability Reporting – List known vulnerabilities from scan reports.

Discretionary

GUI – Overall interface fits the description of a capable cybersecurity tool.

Remediation – Provide recommendations based on existing knowledge base.

Vulnerability Insight – Analyse database and historical data and provide better insight to

vulnerabilities.

User Account – Cybersecurity members can log into the application using their own

credentials.

Exceptional

Release - Release quality product including attractive GUI and features optimized for speed

and ease of use.

Advanced Chatbot – Human-like interaction and responses.

Personalized Workflow – Model learns the user’s needs and preferences thus able to tailor the

workflow to them for current and future application sessions.

PROJECT PLAN AND SPECIFICATION

Page 3 of 24

Comprehensive Asset Rundown – Provide insight to assets using historical data (common

vulnerabilities)

Scanning capability – Can execute python scripts for running Nmap and Nessus functionalities

by installing the appropriate libraries. Results will be replied to the user on the web-interface.

Targeted Remediation – Provide recommendations based on existing knowledge base.

Incident Triaging – Assign vulnerabilities to appropriate response team through email.

Project Plan

Project Timeline

There are various directions we can take to create our Personal Assistant application. Before

delving into project requirements and recommendations we will explore our estimated project

timeline.

Gantt Chart of Project Timeline

Figure 1: Project Timeline

It should be noted that the milestones are influenced by the deliverable deadlines.

Key milestones to achieve:

0
1
/1

0
/2

0
2
3

0
8
/1

0
/2

0
2
3

1
5
/1

0
/2

0
2
3

2
2
/1

0
/2

0
2
3

2
9
/1

0
/2

0
2
3

0
5
/1

1
/2

0
2
3

1
2
/1

1
/2

0
2
3

1
9
/1

1
/2

0
2
3

2
6
/1

1
/2

0
2
3

0
3
/1

2
/2

0
2
3

1
0
/1

2
/2

0
2
3

1
7
/1

2
/2

0
2
3

2
4
/1

2
/2

0
2
3

3
1
/1

2
/2

0
2
3

0
7
/0

1
/2

0
2
4

1
4
/0

1
/2

0
2
4

2
1
/0

1
/2

0
2
4

2
8
/0

1
/2

0
2
4

0
4
/0

2
/2

0
2
4

1
1
/0

2
/2

0
2
4

1
8
/0

2
/2

0
2
4

2
5
/0

2
/2

0
2
4

0
3
/0

3
/2

0
2
4

1
0
/0

3
/2

0
2
4

1
7
/0

3
/2

0
2
4

2
4
/0

3
/2

0
2
4

3
1
/0

3
/2

0
2
4

Specification and Plan Submission

Research Phase

Research Report Submission

Setting Scan environment

Gathering Training Data

Backend Architecture Design

Frontend UI Design

 Core Backend Development

Database Development

GUI development

AI Fine-Tuning

Initial Test phase

Non-core development

Presentation Preparation

Presentation to Examiners

Second Test Phase

Research Poster Submission

Final Report Submission

External User Testing

Final Testing and Polish

Final Deliverable Submission

PROJECT PLAN AND SPECIFICATION

Page 4 of 24

Tasks Given Deadline

Specification and Plan Submission 27/10/2023

Research Report Submission 24/11/2023

Presentation to Examiners Starting from 15/02/2024

Research Poster Submission 23/02/2024

Final Deliverables and Report Submission 29/03/2024

Table 1: Listed Deadlines

Project Timeline Summary

Figure 2: Timeline Summary

Our project is divided roughly into 5 phases.

Research Phase - is where we explore AI functionalities and gauge the feasibility of the overall

project. Having to see the potential roadblocks early on can greatly reduce future downtime

and speed up designing and developing our application. A research report encompassing all the

work done here must be submitted by the designated deadline.

Designing Phase - This is where the coding architecture is drafted. Potential problems when

developing can be identified here early on and be addressed or prepared for when the situation

arises. GUI design will also be drafted using wireframes and shown to project supervisor.

Development Phase – Backend and frontend will begin being developed. Backend

development is prioritized as more attention is needed to train the LLM and prepare it for

chatbot functionality. Choosing a good web framework allows for creation usable and attractive

Graphical User Interface. A prototype must be ready for presentation at the start of 2024.

Testing Phase – Can be conducted in tandem with development phase where the application

is tested against FURPS, a model used to evaluate the application’s overall attributes and see

if it performs within the project’s expectations. Prototypes can also be shared with project

supervisor and other cybersecurity specialists for outside user testing.

Delivery Phase – Project deliverable would be ready to submit, including application scripts

and instructions on how to operate the Personal Assistant. Project report must be done by the

final deadline.

Research Phase
Design and
Planning

Phase

Development
Phase

Testing Phase
Delivery

Phase

PROJECT PLAN AND SPECIFICATION

Page 5 of 24

Use Case Scenario

Figure 3: Use Case Diagram

Diagram Legend:

1. The rectangle represents AI Personal Assistant, the application of the project.

2. The ovals within the rectangle represent use case functions.

3. The humanoid figures represent users of the application.

Diagram 1 is a simple visualization of high-level use cases of the AI Personal Assistant.

The user must authenticate before using the other functions. The application would check

for records of the user’s interaction and begin the session with a general idea of how the

user will operate.

It is evident in the diagram that the application’s primary task is to display

vulnerabilities from security scanners stored in the database. Threat and Vulnerability

PROJECT PLAN AND SPECIFICATION

Page 6 of 24

Management relies on security platforms to provide accurate readings, ensuring IT security

of the organization.

To enhance vulnerability listing function, we implement LLMs (Large Language

Models) that utilizes NLP (Natural Language Processing) to analyse vulnerability list,

comparing with historical data and provide insight and targeted remediations.

Leveraging the LLM model, the user can easily issue instructions using text to the

Personal Assistant. It is limited to the functions coded into the application. This is further

explored in architecture breakdown section.

Such functions include conducting security scans outside of established schedules to

test for further vulnerabilities on a host. The Personal Assistant should also be equipped with

the functionality to triage a vulnerability to the appropriate response team through email

containing relevant information such as Vulnerability ID, risk level, remediations, etc.

PROJECT PLAN AND SPECIFICATION

Page 7 of 24

Application Architecture Breakdown

Fine Tuning the Language Model

Figure 4: Fine Tuning Plan

Large language models are flexible and can be used for various tasks out of the box. These

models however should be trained with datasets appropriate for its intended purpose (OpenAI,

2023).

Training with historical security data such as past scans give the LLM artificial memory and

knowledge on the organization’s systems. LLM output would be more consistent and avoids

hallucinating false information or knowledge outside the intended database.

In the diagram above, we start by obtaining the datasets. Our application processes the dataset

and uses appropriate libraries for fine-tuning. Op6enAI has functions designated for fine-tuning

their LLMs.

Fine tuning can be conducted manually if the output of the LLM is dated. It is also possible to

automate fine-tuning on a consistent schedule to ensure the LLM is up to date with latest

information.

PROJECT PLAN AND SPECIFICATION

Page 8 of 24

Scheduled vulnerability scanning

Figure 5: Automated Scan Scheduling

Diagram above is an example of scans being conducted on the organization IT environment on

a designated schedule.

For the project, VMs will be used to replicate an organization computing infrastructure. A

single VM acts as a host and multiple VMs form an environment in which we can conduct

security scans in. VMs can be manipulated to house vulnerabilities for the security scanners to

detect and report.

Example scenario would be where Nessus security scans are conducted over the weekend. Scan

results are exported in various formats, including CSV, PDFs and XMLs.

Our application should be coded to receive the scan report using Nessus’s API integration

capability. The application can process and format the data to be stored in database. Data will

also be encrypted for confidentiality.

PROJECT PLAN AND SPECIFICATION

Page 9 of 24

Vulnerability Listing

Figure 6: Processing Vulnerabilities

TVM member enters the office for the new week. They open Personal Assistant and

authenticate credentials through the login and hashing functions in place within the application.

Appropriate encryption protocols will be in place to ensure confidentiality of data credentials.

Once authenticated, the user will be taken to a chatbot-like GUI. They first prompt the

bot about security scans conducted over the weekend by entering instructions through the text

box. Application takes input, formats it into a prompt and sends it to the LLM.

We will be utilizing LangChain, an application framework will be used for this project.

It will be explained in the Basic Requirements page. In brief terms it allows the LLM to select

and execute our application’s functions based on the user’s needs (LangChain, 2023).

PROJECT PLAN AND SPECIFICATION

Page 10 of 24

For the example above, the application will extract scan results for the weekend scan

and sends it to the large language model to reformat into a readable format. The application

will then display the LLM output it on the text interface for the user to see.

Vulnerability Insight and Response

Figure 7: Vulnerability Response Process

TVM member can prompt the bot to expound on detected vulnerabilities. Personal Assistant

gives insight based on previous scans on the targeted host. and generate an appropriate

remediation recommendation.

The application should have the capability of triaging the incident to the appropriate

response team. The application prepares a notification email based on a template containing

vulnerability ID, vulnerability description and possible remediations. The LLM should be able

to decide on the best response team through its reasoning capability.

PROJECT PLAN AND SPECIFICATION

Page 11 of 24

Application will display the email drafted to the user. If the email is deemed valid to send, they

will confirm with application and the email will be sent to the appropriate response team.

Impromptu Security Scan

Figure 8: Self-Scan Integration

Another functionality of the application is to allow for security scans when prompted by the

user. Nmap for example, through python integration the application can directly run a network

scan on a host within the organization environment.

The user must provide the instruction and appropriate parameters such as host IP in the

text input. LLM should be able to parse the instructions and then communicate with the

application using LangChain as the bridge. Application will execute the correct function which

is running an Nmap scan using given parameters.

The LLM will receive the scanning results from the application and process it. The

application will take the LLM output and display it to the user.

PROJECT PLAN AND SPECIFICATION

Page 12 of 24

Basic Requirements

This section contains all the requirements needed to conduct the project.

The requirements of the project shall be based on the FURPS model that is mainly used to

classify software quality attributes (Gekht, 2020).

FURPS breakdown:

Attribute Name Description

Functionality Capability to execute tasks within project expectations

Usability Ability for users to operate the application

Reliability Ability to operate continuously and be resistant to complications and

unforeseen circumstances (e.g., Malicious user behaviour)

Performance Speed and quality of tasks executed

Supportability Capable of being maintained and serviced to ensure application

longevity.

Table 2: FURPS

Software Requirements
Most of the requirements are software related except for host machines which are hardware.

Software requirements include:

1. Software requirements include:

2. Large Language Models

3. Programming Language

4. Code Editors

5. Web Framework Libraries

6. Virtual Machines

7. Security Scanning Software

8. Database Options

9. Supporting Applications

10. Extension Libraries

11. LangChain (Crucial Extension)

PROJECT PLAN AND SPECIFICATION

Page 13 of 24

Large Language Models
The core of our application. Choosing the right Language Model ensures tasks are executed within the

project’s expectations.

In FURPS terms, differing language models does not affect the application’s overall functionality but

may affect performance such as output response of the LLM which in turn affects Usability.

Criteria Large Language Model

GPT 3.5 Turbo GPT 4 Llama 2

Developed By OpenAI OpenAI Meta

Description Capable of

understanding natural

language and creative,

useful for mimicking

human

communication.

Advanced Reasoning

capability. Can follow

instructions better and

solve complex

problems. Can also

process images.

Open Source LLM.

Knowledge base is

trained on newer data,

making it up to date

with more recent

events than OpenAI

models

Speed Turbo version is quick

at the possible cost of

accuracy

Slower than GPT 3.5

but highly accurate

Dependent on host

used to run the model.

Running Environment Hosted on OpenAI

platform

Hosted on OpenAI

platform

Run locally

Context Size 4096 tokens 8192 – 32k 4096

Pricing Rate $0.0015 / 1K tokens

(Input)

$0.002 / 1K tokens

(Output)

$0.03 / 1K tokens

(Input)

$0.06 / 1K tokens

(Output)

Free to download and

use.

Table 3: LLM Comparison

Ideally GPT 4 would be the LLM to use. However, GPT 3.5 Turbo is capable enough to run

our application and is more cost effective. Llama 2 is free to run but can be computationally

expensive to maintain at an efficient rate (Luzniak, 2023).

PROJECT PLAN AND SPECIFICATION

Page 14 of 24

High Level Programming Language
There are various programming languages that can be used to create AI applications (Aurora, 2023).

Below is a table listing comparisons based on several key criteria when choosing main language to

focus on.

Criteria Programming Language

C++ Java JavaScript Python

Ease of

development

Complex syntax

may induce risk

of human errors.

Static typing

may slow down

coding but

allows to detect

errors early.3

Syntax is

straightforward

compared to C++

but can still be

lengthy. Static

typing akin to

C++.

Easy to use

syntax. Can be

used for

backend

development

through node.js.

Dynamic

Typing for

quicker coding.

Easy to use and

read syntax even

compared to

JavaScript and

has dynamic

typing, reducing

risk of errors and

promotes

flexibility.

Integration with AI

and LLM

Slightly limited

library

ecosystem

making it harder

to build AI

applications.

Has a relatively

robust library for

AI development.

Contains a wide

range of

libraries and

frameworks for

AI.

Contains vast

range of well

documented

libraries and

frameworks for

AI development.

Community

Support and

Learning

Resources

Small but

dedicated

community,

capable of

providing highly

specialized and

excellent support

for AI

development.

Substantial

community that

provides

adequate support

for AI

development.

Growing

community but

smaller than

Python’s and

documentation

may be less

comprehensive.

Incredibly large

community with

lots of resources,

tutorials for AI

development.

Table 4: Programming Languages

Python as of now is the forefront programming language for AI development and

machine learning and shall be used for the project. Based on the FURPS model python

development would lead to great supportability due to its popularity when developing AI

applications and conduct machine learning tasks and the community resources available to

PROJECT PLAN AND SPECIFICATION

Page 15 of 24

view. OpenAI encourages development using Python with tutorials and resources provided by

the organization.

Code Editors

Type of coding environment can greatly affect development speed and reliability.

Criteria Code Editor

PyCharm Visual Studio Code JupyterLab

Language Support Python-focused Multi-language

focused

Python-focused

Extensions Substantial collection

of plugins and

extensions.

Very large collection

of plugins and

extensions

Limited extensions

Interface User friendly and

visible interface and is

customizable.

User friendly and

visible interface and is

customizable.

Web-based interface

may be limiting.

Web Development Excellent support for

web frameworks such

as Django and Flask.

Multi-language

support allows for web

development

languages. (HTML,

CSS, JavaScript)

Contains built-in

support for web

development such as

HTML, CSS and

JavaScript).

Debugging Wide range debugging

tools suited for

Python.

Basic debugging tools. Limited debugging

capability.

Table 5: IDE comparison

PyCharm shall be the main IDE and coding environment for the project as Django and Flask

support is excellent for building the Personal Assistant.

PROJECT PLAN AND SPECIFICATION

Page 16 of 24

Web Framework Libraries

Web frameworks are a set of modules used for assisting in writing web application code.

Technically it is not necessary but highly recommended as it can increase user usability and

performance of the application. There are various options. For this project, I have narrowed it

down to three.

Criteria Web Framework

Django Flask Streamlit

Purpose Full-stack Python

framework for

complex, large-scale

web applications

Lightweight

framework for making

smaller apps and

prototyping larger

ones.

Easy to use web

framework for

prototyping and

deploying web

applications based on

generative AI.

Database Support Django supports the

most popular

relational database

management systems

like MySQL, Oracle

etc.

No default model

means it can support

multiple database

types and have more

control. Uses

SQLAlchemy for

database requirements.

Like Flask, no built-in

database support

requires external

library such as

SQLAlchemy.

Flexibility Less flexible due to

built-in features and

tools. Developers

cannot make changes

to the modules.

Extensive libraries

supported allowing for

flexibility when

developing.

Somewhat limited

flexibility but has

features suited for AI

application building.

AI integration Not much support for

AI-specific features.

Not much support for

AI-specific features.

Extensive integration

with LLMs such as

GPT and Llama.

Community Support Large community

capable of providing

resources for web app

building.

Medium sized

community tailored

for beginner

developers and

startups.

Community is rapidly

growing with

resources available for

AI app development.

Table 6: Python Web Frameworks

PROJECT PLAN AND SPECIFICATION

Page 17 of 24

Streamlit seems to be the best fit based on FURPS criteria. It offers reliability and

supportability due to it being developed solely for data applications including generative AI, a

new form of content that has revolutionized workflow for various industries (Kelly & Treuille

, 2023). LangChain libraries also help alleviate database implementations. Streamlit also excels

at testing LLM output due to its simplicity and light overhead.

Virtual Machines

Virtual machines will be used to set up a test scanning environment. Each VM will represent

a target host to be scanned by security tools such as Nessus and Nmap.

Criteria VM Tool

VirtualBox VMware Workstation

Player

Hyper-V

Operating Systems Multiple OS options,

including older versions

Multiple OS options Windows only

Hypervisor Type Type 2 Hypervisor -

runs on the operating

system installed on a

host.

Type 2 Hypervisor –

runs on the operating

system installed on a

host.

Type 1 Hypervisor -

that runs directly on

a computer’s

hardware.

Performance Slow to medium speed Mid to high speed. High performing.

Ease of use Very easy to set up and

utilize VMs and

functionalities.

Easy to set up VMs. Not too difficult to

set up.

Table 7: Virtual Machine Hosts

According to FURPS criteria, all VM tools are capable of simulating organization IT

environment. VMWare Workstation would be the preferred VM application as it has good

performance levels and decent supportability. Hyper-V however will be further explored if the

need for faster performance from a Type 1 Hypervisor VM arises (Manikandan, 2023).

PROJECT PLAN AND SPECIFICATION

Page 18 of 24

Security Scanning Software

The main way to create a dataset is to create a test environment to gather information. Dataset

will be used as knowledge base to fine tune the bot.

Criteria Security Tool

Nessus Scanner Network Mapper

(Nmap)

Burp Suite Zap

Descriptions Security tool

allowing to scan

the network

environment and

manage

vulnerabilities.

Open-source

network discovery

and security

auditing tool.

Flexible security

tool for testing

web applications

Open-source

security tool to

scan and fix

vulnerabilities

of web

applications

Key functions Automated scans.

Can generate

detailed reports

with

remediations.

Focused on

network scanning

with various

techniques.

Extensive range

of tools for

professional

web application

testing.

Flexible tool

with scripting

capabilities for

automating

scans.

API-integration Yes Yes Yes Yes

Pricing Has free tier

(Nessus

Essentials) but

limited features

Free to use Has free tier

(Burp Suite

Community) but

limited features

Free to use

Table 8: Scanning Software

Nessus Essentials is the preferred security scanner as in terms of FURPS it provides excellent

functionality features, capable of conducting holistic scans of targeted hosts, identifying a

wider range of vulnerabilities and has result export feature.

PROJECT PLAN AND SPECIFICATION

Page 19 of 24

Database Options

We need to store our security reports and scans in a database. This will also act as the location

for the knowledge base. We can choose several ways to host our database.

Criteria Database Hosts

XAMPP-

MariaDB

ChromaDB MongoDB Pinecone

Functionality Easy to use SQL

database

application for

local hosts

Experimental

vector database

that can be hosted

locally or on

cloud.

Widely used cloud

database service

that allows SQL

and vector

versions. with AI

integration feature.

Cloud based

vector database

tailored for

building

applications for AI

and fine-tuning

Large Language

Models.

Pricing Free to use Free to use $70/month (paid

tier)

$57/month (paid

tier)

Ease of use Easy to set up

with tutorials

available online.

Available

resources online

and syntax is

easy to utilize

Vast resources

available due to

popularity and

community

support.

Resources

available on

website to assist

with building.

Application

Integration

Libraries available

to integrate

database with

application

Vector database

makes it suited

for AI

applications

Can integrate with

application and

has AI support.

Can integrate with

application and

encouraged for AI

apps.

Table 9: Database Types

Due to the experimental nature of the project, we will use ChromaDB as main database to

store our scan results, historical data, user credentials and other vital data for vulnerability

management. Data must be encrypted through proper hashing functions to maintain

confidentiality and increase reliability for users. Local databases also ensure performance as

it is locally hosted and no need for internet connections to cloud services.

PROJECT PLAN AND SPECIFICATION

Page 20 of 24

Supporting Applications

I will be actively using GitHub that should be integrated with my preferred IDE or coding

environment to keep track of my scripts, application drafts and prototypes (Coursera, 2023).

Software Name Description

Git Version control system for developers to record changes

made on their script and files.

GitHub Web-based Git repository for storing all scripts and drafts

of our applications.

Table 10: Git Descriptions

GitHub repository also allows for viewing millions of other repositories of other users that

are publicly made, allowing developers to take inspiration and expedite their own projects,

akin to this one.

Extension Libraries

As Python is the preferred programming language for this project, there are several key

libraries to install. Pip is used to install most of the libraries mentioned.

Python Libraries Description

Transformer Library created by Hugging Face to install and train

external LLMs for that website.

OpenAI OpenAI’s library to use its various plugins for AI

application building.

LangChain Application framework primarily used for AI projects.

Offers various plugins that enhance the application’s

functionalities.

Tiktoken Tokenizer used to manage and calculate tokens for AI

models to process. Tokens are lengths of characters which

the LLM use as memory currency.

MySQL Needed to connect application to external database server

and use SQL queries.

Table 11: Python Libraries

PROJECT PLAN AND SPECIFICATION

Page 21 of 24

LangChain

This extension library calls for its own section. LangChain is an application framework that

acts as the primary link between the user and LLM with the application functions (LangChain,

2023). LangChain has vital modules which enhances the application’s functionality such as

database integration, document crawling, autonomous function execution, etc.

Module Name Description

Model Input/Output Ability for user to interface with LLM and

parse information to be used for application

functions

Retrieval Allows for fetching data from data sources

such as database or public websites.

Chains Way to utilize LLM outputs into single

functions and connects them together to

carry out complex functions

Agents Reasoning module that helps the LLM to

decide which function on the application to

use.

Memory Ability to store information on previous

tasks and maintain a session.

Callbacks Module that allows user to monitor and log

tasks being carried out in the application

through ‘CallbackHandlers’ objects.

Table 12: LangChain Breakdown

Using the FURPS model to evaluate LangChain’s importance, it gives the application

the functionality of a human-like security agent. Users can tell the AI Personal Assistant

through text input to conduct a specific task. With the help of agents and model I/O, the LLM

can understand the user and execute the desired operation such as listing vulnerabilities of a

host machine.

These ready-made modules also improve application performance by instilling code

structure and avoid writing complex and suboptimal configurations that may slow down

function execution.

PROJECT PLAN AND SPECIFICATION

Page 22 of 24

LangChain being a popular framework contributes to the supportability of the project.

There are consistent updates to the framework and various resources and tutorials available

online to assist with operating the application.

PROJECT PLAN AND SPECIFICATION

Page 23 of 24

Hardware Requirements

A private-owned physical machine is recommended as it can centralize application

development and store vital data.

Machine name Specifications Description

Student computer System RAM: 15.2 GB

Disk Size: 930 GB

CPU: AMD Ryzen 7 6800HS

Physical machine capable of

hosting coding environments, VMs

for scanning simulations and even

Large Language Models if needed.

Google Collab System RAM: 12.7GB

Disk Size: 107.7 GB

CPU: Tesla K80 GPU

Cloud-based computing resource

available for experimenting scripts

and hosting open-source LLMs.

Table 13: Hardware Requirements

Student computer is the default option to use for creating the application. If the need

arises Google Collab service can be used if working remotely from student computer or

needing to host open source LLMs such as Llama 2 through cloud without leveraging local

computing power.

PROJECT PLAN AND SPECIFICATION

Page 24 of 24

References

1. Aurora, S. (2023) Best Programming Language for AI Development in 2023 [online]

Available at: https://hackr.io/blog/best-language-for-ai [Accessed 15 Oct. 2023].

2. Cousera (2023) What Is GitHub and Why Should You Use It? [online] Available at:

www.coursera.org/articles/what-is-git [Accessed 20 Oct. 2023].

3. Gekht, N. (2020) Create Better Backlog and Engage the Development Team with FURPS.

[online] Available at: https://gehtsoftusa.com/blog/create-better-backlog-and-engage-the-

development-team-with-furps/ [Accessed 20 Oct. 2023].

4. Kelly, A., Treuille A. (2023) Generative AI and Streamlit: A perfect match. [online]

Available at: blog.streamlit.io/generative-ai-and-streamlit-a-perfect-match/ [Accessed 16

Oct. 2023].

5. LangChain (2023) Introduction [online] Available at:

python.langchain.com/docs/get_started/introduction [Accessed 14 Oct. 2023].

6. Luzniak, K. (2023) Is Llama 2 Better Than GPT Models? 6 Main Differences Between

Llama 2 vs. GPT-4 vs. GPT-3.5 [online] Available at: https://neoteric.eu/blog/6-main-

differences-between-llama2-gpt35-and-gpt4/ [Accessed 15 Oct. 2023].

7. Manikandan, S. (2023) Client Hyper-V vs VirtualBox. [online] Available at:

www.bdrsuite.com/blog/client-hyper-v-vs-virtualbox/ [Accessed 22 Oct. 2023].

8. OpenAI (2023) Fine Tuning [online] Available at: platform.openai.com/docs/guides/fine-

tuning [Accessed 18 Oct. 2023].

9. Raf (2023) What are tokens and how to count them? [online] Available at:

help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them [Accessed 18

Oct. 2023].

10. Uzialko, A. (2023) How Artificial Intelligence Will Transform Businesses [online] Available

at: www.businessnewsdaily.com/9402-artificial-intelligence-business-trends.html [Accessed

10 Oct. 2023].

PROJECT PLAN AND SPECIFICATION

Page 25 of 24

Appendix

TABLES

Table 1: Listed Deadlines ... 4

Table 2: FURPS ... 12

Table 3: LLM Comparison ... 13

Table 4: Programming Languages ... 14

Table 5: IDE comparison ... 15

Table 6: Python Web Frameworks ... 16

Table 7: Virtual Machine Hosts ... 17

Table 8: Scanning Software ... 18

Table 9: Database Types .. 19

Table 10: Git Descriptions ... 20

Table 11: Python Libraries ... 20

Table 12: LangChain Breakdown .. 21

Table 13: Hardware Requirements ... 23

FIGURES

Figure 1: Project Timeline ... 3

Figure 2: Timeline Summary ... 4

Figure 3: Use Case Diagram .. 5

Figure 4: Fine Tuning Plan .. 7

Figure 5: Automated Scan Scheduling ... 8

Figure 6: Processing Vulnerabilities .. 9

Figure 7: Vulnerability Response Process ... 10

Figure 8: Self-Scan Integration .. 11

